Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 124

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

JAEA Reports

The Study of oxidative stress status in the organs exposed to low dose/low dose-rate radiation (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2022-063, 86 Pages, 2023/02

JAEA-Review-2022-063.pdf:3.81MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "The study of oxidative stress status in the organs exposed to low dose/low dose-rate radiation" conducted from FY2019 to FY2021. Since the final year of this proposal was FY2021, the results for three fiscal years were summarized. The present study aims to investigate the biological effects of low dose/low dose-rate radiation exposure, which is of great social interest, on the oxidative stress status of individual organs and will contribute to the collection of scientific data in a dose range to be required. The samples to be analyzed in this study were collected from wild Japanese macaques exposed in the ex-evacuation zone after the accident of 1F.

Journal Articles

Development of dynamic PRA methodology for external hazards (Application of CMMC method to severe accident analysis code)

Li, C.-Y.; Watanabe, Akira*; Uchibori, Akihiro; Okano, Yasushi

Dai-26-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 4 Pages, 2022/07

Identifying accident scenarios that could lead to severe accidents and evaluating their frequency of occurrence are essential issues. This study aims to establish the methodology of the dynamic Probabilistic Risk Assessment (PRA) for sodium-cooled fast reactors that can consider the time dependency and the interdependence of each event. Specifically, the Continuous Markov chain Monte Carlo (CMMC) method is newly applied to the SPECTRA code, which analyzes the severe accident conditions of nuclear reactors, to develop an evaluation methodology for typical external hazards. Currently, a fault-tree model of air coolers of decay heat removal system is implemented as the CMMC method, and a series of preliminary analysis of the plant's transient characteristics under the scenario of volcanic ashfall has been conducted.

JAEA Reports

The Study of oxidative stress status in the organs exposed to low dose/low dose-rate radiation (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2021-050, 82 Pages, 2022/01

JAEA-Review-2021-050.pdf:2.89MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "The study of oxidative stress status in the organs exposed to low dose/low dose-rate radiation" conducted in FY2020. The present study aims to investigate the biological effects of low dose/low dose-rate radiation exposure, which is of great social interest, on the oxidative stress status of individual organs and will contribute to the collection of scientific data in a dose range to be required. An interdisciplinary collaborative study discussed the correlation between radiation dose and the biological effect by analyzing the samples of wild Japanese macaques exposed to radiation due to the accident of Fukushima Daiichi Nuclear Power Station and of animal experiments.

Journal Articles

Numerical investigations on the coolability and the re-criticality of a debris bed with the density-stratified configuration

Li, C.-Y.; Uchibori, Akihiro; Takata, Takashi; Pellegrini, M.*; Erkan, N.*; Okamoto, Koji*

Dai-25-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 4 Pages, 2021/07

The capability of stable cooling and avoiding re-criticality on the debris bed are the main issues for achieving IVR (In-Vessel Retention). In the actual situation, the debris bed is composed of mixed-density debris particles. Hence, when these mixed-density debris particles were launched to re-distribute, the debris bed would possibly form a density-stratified distribution. For the proper evaluation of this scenario, the multi-physics model of CFD-DEM-Monte-Carlo based neutronics is established to investigate the coolability and re-criticality on the heterogeneous density-stratified debris bed with considering the particle relocation. The CFD-DEM model has been verified by utilizing water injection experiments on the mixed-density particle bed in the first portion of this research. In the second portion, the coupled system of the CFD-DEM-Monte-Carlo based neutronics model is applied to reactor cases. Afterward, the debris particles' movement, debris particles' and coolant's temperature, and the k-eff eigenvalue are successfully tracked. Ultimately, the relocation and stratification effects on debris bed's coolability and re-criticality had been quantitatively confirmed.

JAEA Reports

The Study of oxidative stress status in the organs exposed to low dose/low dose-rate radiation (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2020-048, 49 Pages, 2021/01

JAEA-Review-2020-048.pdf:4.38MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2019. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "The study of oxidative stress status in the organs exposed to low dose/low dose-rate radiation". This study investigates the biological effects of low dose/low dose-rate radiation exposure, which is of great social interest, on the oxidative stress status of individual organs and will contribute to the collection of scientific data in a dose range to be required. An interdisciplinary collaborative study discussed the correlation between radiation dose and the biological effect by analyzing the samples of wild Japanese macaques exposed to radiation due to the accident of Fukushima nuclear power station and of animal experiments.

Journal Articles

Gamma detector response simulation inside the pedestal of Fukushima Daiichi Nuclear Power Station

Riyana, E. S.; Okumura, Keisuke; Terashima, Kenichi; Matsumura, Taichi; Sakamoto, Masahiro

Mechanical Engineering Journal (Internet), 7(3), p.19-00543_1 - 19-00543_8, 2020/06

Journal Articles

Calculation of gamma and neutron emission characteristics emitted from fuel debris as a basis for determination of suitable detector system

Riyana, E. S.; Okumura, Keisuke; Terashima, Kenichi

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 4 Pages, 2019/05

Journal Articles

Study on loss-of-cooling and loss-of-coolant accidents in spent fuel pool, 1; Overview

Kaji, Yoshiyuki; Nemoto, Yoshiyuki; Nagatake, Taku; Yoshida, Hiroyuki; Tojo, Masayuki*; Goto, Daisuke*; Nishimura, Satoshi*; Suzuki, Hiroaki*; Yamato, Masaaki*; Watanabe, Satoshi*

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 8 Pages, 2019/05

In this research program, cladding oxidation model in SFP accident condition, and numerical simulation method to evaluate capability of spray cooling system which was deployed for spent fuel cooling during SFP accident, have been developed. These were introduced into the severe accident codes such as MAAP and SAMPSON, and SFP accident analyses were conducted. Analyses using Computational Fluid Dynamics (CFD) code were conducted as well for the comparison with SA code analyses and investigation of detail in the SFP accident. In addition, three-dimensional criticality analysis method was developed as well, and safer loading pattern of spent fuels in pool was investigated.

Journal Articles

Implementation of a low-activation Au-In-Cd decoupler into the J-PARC 1 MW short pulsed spallation neutron source

Teshigawara, Makoto; Ikeda, Yujiro; Oi, Motoki; Harada, Masahide; Takada, Hiroshi; Kakishiro, Masanori*; Noguchi, Gaku*; Shimada, Tsubasa*; Seita, Kyoichi*; Murashima, Daisuke*; et al.

Nuclear Materials and Energy (Internet), 14, p.14 - 21, 2018/01

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

We developed an Au-In-Cd (AuIC) decoupler material to reduce induced radioactivity instead of Ag-In-Cd one, which has a cut off energy of 1eV. In order to implement it into an actual moderator-reflector assembly, a number of critical engineering issues need to be resolved with regard to large-sized bonding between AuIC and A5083 alloys by the hot isostatic pressing process. We investigated this process in terms of the surface conditions, sizes, and heat capacities of large AuIC alloys. We also show a successful implementation of an AuIC decoupler into a reflector assembly, resulting in a remarkable reduction of radioactivity by AuIC compared to AIC without sacrificing neutronic performance.

Journal Articles

Implementation of tetrahedral-mesh geometry in Monte Carlo radiation transport code PHITS

Furuta, Takuya; Sato, Tatsuhiko; Han, M. C.*; Yeom, Y. S.*; Kim, C. H.*; Brown, J. L.*; Bolch, W. E.*

Physics in Medicine & Biology, 62(12), p.4798 - 4810, 2017/06

 Times Cited Count:10 Percentile:47.17(Engineering, Biomedical)

A new function to treat tetrahedral-mesh geometry, a type of polygon-mesh geometry, was implemented in the Particle and Heavy Ion Transport code Systems (PHITS). Tetrahedral-mesh is suitable to describe complex geometry including curving shapes. In addition, construction of three-dimensional geometry using CAD software becomes possible with file format conversion. We have introduced a function to create decomposition maps of tetrahedral-mesh objects at the initial process so that the computational time for transport process can be reduced. Owing to this function, transport calculation in tetrahedral-mesh geometry can be as fast as that for the geometry in voxel-mesh with the same number of meshes. Due to adaptability of tetrahedrons in size and shape, dosimetrically equivalent objects can be represented by tetrahedrons with much fewer number of meshes compared with the voxels. For dosimetric calculation using computational human phantom, significant acceleration of the computational speed, about 4 times, was confirmed by adopting the tetrahedral mesh instead of the voxel.

JAEA Reports

MVP/GMVP version 3; General purpose Monte Carlo codes for neutron and photon transport calculations based on continuous energy and multigroup methods

Nagaya, Yasunobu; Okumura, Keisuke; Sakurai, Takeshi; Mori, Takamasa

JAEA-Data/Code 2016-018, 421 Pages, 2017/03

JAEA-Data-Code-2016-018.pdf:3.89MB
JAEA-Data-Code-2016-018-appendix(CD-ROM).zip:4.02MB
JAEA-Data-Code-2016-018-hyperlink.zip:1.94MB

In order to realize fast and accurate Monte Carlo simulation of neutron and photon transport problems, two Monte Carlo codes MVP (continuous-energy method) and GMVP (multigroup method) have been developed at Japan Atomic Energy Agency. The codes have adopted a vectorized algorithm and have been developed for vector-type supercomputers. They also support parallel processing with a standard parallelization library MPI and thus a speed-up of Monte Carlo calculations can be achieved on general computing platforms. The first and second versions of the codes were released in 1994 and 2005, respectively. They have been extensively improved and new capabilities have been implemented. The major improvements and new capabilities are as follows: (1) perturbation calculation for effective multiplication factor, (2) exact resonant elastic scattering model, (3) calculation of reactor kinetics parameters, (4) photo-nuclear model, (5) simulation of delayed neutrons, (6) generation of group constants, etc. This report describes the physical model, geometry description method used in the codes, new capabilities and input instructions.

JAEA Reports

Shielding calculation by PHITS code during replacement works of startup neutron sources for HTTR operation

Shinohara, Masanori; Ishitsuka, Etsuo; Shimazaki, Yosuke; Sawahata, Hiroaki

JAEA-Technology 2016-033, 65 Pages, 2017/01

JAEA-Technology-2016-033.pdf:11.14MB

To reduce the neutron exposure dose for workers during the replacement works of the startup neutron sources of the High Temperature Engineering Test Reactor, calculations of the exposure dose in case of temporary neutron shielding at the bottom of fuels handling machine were carried out by the PHITS code. As a result, it is clear that the dose equivalent rate due to neutron radiation can be reduced to about an order of magnitude by setting a temporary neutron shielding at the bottom of shielding cask for the fuel handling machine. In the actual replacement works, by setting temporary neutron shielding, it was achieved that the cumulative equivalent dose of the workers was reduced to 0.3 man mSv which is less than half of cumulative equivalent dose for the previous replacement works; 0.7 man mSv.

Journal Articles

Measurement of neutron spectra produced in the forward direction from thick graphite, Al, Fe and Pb targets bombarded by 350 MeV protons

Iwamoto, Yosuke; Taniguchi, Shingo*; Nakao, Noriaki*; Itoga, Toshio*; Nakamura, Takashi*; Nakane, Yoshihiro; Nakashima, Hiroshi; Satoh, Daiki; Yashima, Hiroshi*; Yamakawa, Hiroshi*; et al.

Nuclear Instruments and Methods in Physics Research A, 562(2), p.789 - 792, 2006/06

 Times Cited Count:6 Percentile:43.77(Instruments & Instrumentation)

Neutron energy spectra produced from thick targets play an important role in validation of calculation codes that are employed in the design of spallation neutron sources and the shielding design of accelerator facilities. However, appropriate experimental data were scarce in the forward direction for the incident energy higher than 100 MeV. In this study, neutron spectra at 0 degree from thick targets bombarded with 350 MeV protons were measured by the time-of-flight technique using an NE213. The targets used were graphite, Al, Fe and Pb and their thicknesses were chosen to be a little thicker than the stopping lengths. The experiment was carried out at the TOF course of the RCNP (Research Center of Nuclear Physics) ring cyclotron, Osaka University. The flight path length between center of the target and of an NE213 were 11.4 m for the measurement of low energy neutrons and 95 m for high energy neutrons. The experimental data are compared with the calculated results by using the Monte Carlo transport codes, such as MCNPX and PHITS codes.

Journal Articles

Technetium separation for future reprocessing

Asakura, Toshihide; Hotoku, Shinobu; Ban, Yasutoshi; Matsumura, Masakazu; Morita, Yasuji

Journal of Nuclear and Radiochemical Sciences, 6(3), p.271 - 274, 2005/12

Tc extraction and separation experiments were performed basing on PUREX technique with using spent UO$$_{2}$$ fuel with burn-up of 44 GWd/t. The experimental results were examined with performing calculations by a simulation code ESSCAR (Extraction System Simulation Code for Advanced Reprocessing). It was demonstrated that Tc can be almost quantitatively extracted from a dissolver solution and that Tc can also be almost quantitatively recovered by scrubbing. Further, it was clearly presented from the calculation results of ESSCAR that the extraction mechanism of Tc is dominated by the synergistic effect of Zr and U.

JAEA Reports

Program POD-P; A Computer code to calculate cross sections for neutron-induced preequilibrium nuclear reactions

Kunieda, Satoshi; Ichihara, Akira

JAERI-Data/Code 2005-005, 33 Pages, 2005/09

JAERI-Data-Code-2005-005.pdf:1.5MB

The computer code, POD-P, was developed to calculate energy spectra and angular distributions of emitted particles for the neutron-induced preequiliblium nuclear reactions. The energy-differential cross sections are computed with the classical one-component exciton model for the nucleon and composite-particle emissions. Along with this, the semi-empirical exciton models are also used for the composite-particle emissions. The double-differential cross sections are derived from those model calculations plus the angular-distribution systematics. The computational method and explanation of input parameters are given with some output examples.

JAEA Reports

Sensitivity analysis on flammable gas dispersion and explosion in HTTR hydrogen production system with fire and explosion analysis code system -P2A- (Contract research)

Inaba, Yoshitomo; Nishihara, Tetsuo

JAERI-Tech 2005-033, 206 Pages, 2005/07

JAERI-Tech-2005-033.pdf:34.71MB

In this report, we investigated the effects of jet for the dispersion and explosion analysis of leaked gas, obstacles, position of an ignition point and cell size for the gas explosion analysis, and atmospheric stability for the dispersion analysis of the leaked gas, with PHOENICS, AutoReaGas, and AUTODYN. Then, we carried out two accident analyses about combustible fluid leakage based on the investigation results of these effects. As a result, it was shown that important buildings related to safety was hardly affected by the explosion of the leaked gas.

Journal Articles

Structure reform and special economic zone in large helium liquifier complex for the 4th generation ERL light source

Minehara, Eisuke

Proceedings of 2nd Annual Meeting of Particle Accelerator Society of Japan and 30th Linear Accelerator Meeting in Japan, p.200 - 201, 2005/07

As the fourth generation energy recovering super-conducting linac (ERL) driven light source is planned to develop and to build as the most advanced national light source facility in Japan, this is a conceptual design work and key components developmental programs including a 200MeV prototype construction. Our existing 4K zero-boil off refrigerator cryogenic and a huge 2K liquefier facility will be combined to make a new hybrid one. Because all cryogenic devices in Japan have been seriously and unnecessarily controlled and affected their safety, maintenance, operation and construction over these several tens years, we will therefore have to cut back excess safety regulation in Japanese domestic high pressure vessel code using a structure reform and special economic zone policy.

Journal Articles

Analytical study on fire and explosion accidents assumed in HTGR hydrogen production system

Inaba, Yoshitomo; Nishihara, Tetsuo; Nitta, Yoshikazu*

Nuclear Technology, 146(1), p.49 - 57, 2004/04

 Times Cited Count:4 Percentile:29.18(Nuclear Science & Technology)

One of the most important safety design issues for a hydrogen production system coupling with a High Temperature Gas-cooled Reactor (HTGR) is to ensure reactor safety against fire and explosion accidents because a large amount of combustible fluid is dealt with in the system. The Japan Atomic Energy Research Institute (JAERI) has a demonstration test plan of a hydrogen production system by steam reforming of methane coupling with the High Temperature engineering Test Reactor (HTTR). In the plan, we developed the P2A code system to analyze event sequences and consequences in detail on the fire and explosion accidents assumed in the HTGR or HTTR hydrogen production system. This paper described the three accident scenarios assumed in the system, the structure of P2A, the analysis procedure with P2A and the results of the numerical analyses based on the accident scenarios, and it was showed that P2A was a useful tool for the accident analysis in the system.

JAEA Reports

Pellet injection and plasma behavior simulation code PEPSI

Takase, Haruhiko*; Tobita, Kenji; Nishio, Satoshi

JAERI-Data/Code 2003-013, 46 Pages, 2003/08

JAERI-Data-Code-2003-013.pdf:1.59MB

no abstracts in English

124 (Records 1-20 displayed on this page)